Asymmetric Synthesis of Simplactones A and B

by Peddikotla Prabhakar, Dasari Ramesh, Singanaboina Rajaram, Dorigondla Kumar Reddy, and Yenamandra Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division – I, Indian Institute of Chemical Technology, Hyderabad – 500007, India

(phone: +91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

A new, simple, and short route for the synthesis of simplactones A (1) and B (2) was achieved from a synthetically prepared chiral auxiliary, *i.e.*, the *Oppolzer* camphor-derived sultam 4, and (4-methoxy-benzyl)-protected 3-hydroxypropanal, in 52 and 48% overall yield, respectively, and with high diastereoselectivity (*Schemes 2* and 3).

Introduction. – Simplactones are pharmacologically active marine secondary metabolites isolated from the Caribbean sponge *Plakortis simplex* [1]. Simplactones show *in vitro* cytotoxic activity against WEHI 164, murine fibrosarcoma cells. Simplactone A (1) and simplactone B (2) were first isolated by *Fattorusso* and co-workers in 1999 [1]. The configuration of the structures was revised by *Ogasawara* and co-workers by the synthesis from enantiomerically pure 4-(cumyloxy)cyclopent-2-en-1-one [2], and the structures were asymmetrically synthesized by *Osorio–Lozada* and *Olivo* through a double-diastereoselective acetate aldol reaction [3]. Recently, *Kamal* and co-workers [4] and *Rama Rao* and co-workers [5] reported a synthesis of simplactone A [4] and simplactone B [5], respectively. Structurally, this type of lactones show very good cytotoxic activity against WEHI 164, and many biologically active compounds like mevinolin, massiolactone [6], compactin, pironetin, phomalactone, and asperlin [7] contained this type of lactone moiety.

The biological potential of these compounds has stimulated us to synthesize 1 and 2 with *Oppolzer*'s camphor-derived sultam, which can be simply prepared compared with other chiral auxiliaries. The retrosynthetic analysis for the synthesis of 1 and 2 is shown in *Scheme 1* starting from (4-methoxybenzyl)-protected 3-hydroxypropanal and *N*-butanoylbornane-10,2-sultam (3). In this *Oppolzer* aldol addition, the 'syn' aldol reaction is giving a higher diastereomer excess (94% *de*) when compared to the '*anti*'

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Retrosynthetic Analysis

 $PMB = 4-MeOC_6H_4CH_2$, TBS = ^tBuMe₂Si

aldol reaction with a de of 86%. Hence, we followed this approach for the synthesis of simplactones A and B.

Results and Discussion. – The stereoselective synthesis of simplactones A (1) and B (2) was carried out as shown in *Schemes 2* and *3*. Thus, the (2*S*)-*N*-butanoylbornane-10,2-sultam (3) [8] was subjected to asymmetric aldol reactions under two different conditions. When the reaction was carried out with 3.0 equiv. of (4-methoxybenzyl)-protected 3-hydroxypropanal, 3.0 equiv. of TiCl₄, and 2.2 equiv of $^{1}Pr_{2}NEt$, the resulting major product was the '*anti*' product **4** [9] (*de* 86% by chiral HPLC; 84% yield) (*Scheme 2*). However, when the reaction was carried out with 1.0 equiv. of (4-methoxybenzyl)-protected 3-hydroxypropanal, 1.0 equiv. of TiCl₄, and 1.2 equiv. of $^{1}Pr_{2}NEt$, the resulting major product was the '*syn*' product **10** [8–10] (*de* 94% by chiral HPLC; 92% yield) (*Scheme 3*). Hence we are reporting the same route for the synthesis of both simplactone isomers.

The 'anti' aldol compound 4 was further treated with LiAlH₄ [10] in dry Et₂O at 0° for 4 h, to give 'anti' diol 5 in 95% yield (*Scheme 2*), and in the same way, the 'syn' diol 11 was obtained in 95% yield (*Scheme 3*). The two OH groups in both isomers 5 and 11 were protected with 'BuMe₂SiOTf in the presence of 2,6-lutidine [11] in dry CH₂Cl₂ to give 6 and 12, respectively, in 95% yield. The (4-methoxybenzyl)-protecting group in 6 and 12 was removed with DDQ [12] to give 7 in 89% yield and 13 in 90% yield, respectively, which were oxidized with iodobenzene diacetate [13] and TEMPO (cat.) in dry CH₂Cl₂ to give 8 in 90% yield and 14 in 88% yield. The removal of the 'BuMe₂Si groups in 8 and 14 was achieved by treatment with Bu₄NF [14] in dry THF furnishing lactols 9 and 15 in 90% yield. The structures of 1 and 2 were established by their IR, ¹H- and ¹³C-NMR, and mass spectra, and their optical rotations were identical with those of the natural products reported by *Osorio–Lozada* and *Olivo* [3].

a) (4-Methoxybenzyl)-protected 3-hydroxypropanal, TiCl₄, Pr₂NEt, dry CH₂Cl₂, 3 h; 84%. b) LiAlH₄, dry Et₂O, 4 h; 95%. c) (*tert*-Butyl)dimethylsilyl trifluoromethanesulfonate ('BuMe₂SiOTf = TBSOTf), 2,6-lutidine (=2,6-dimethylpyridine), dry CH₂Cl₂, 1 h; 95%. d) DDQ (4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile), CH₂Cl₂, H₂O, 2 h; 89%. e) Iodobenzene diacetate, (=bis(acetato-κO)phenyliodine), cat. 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO), dry CH₂Cl₂, 3 h; 90%. f) Bu₄NF, THF, 2 h; 90%. g) Iodobenzene diacetate, cat. TEMPO, dry CH₂Cl₂, 3 h; 89%.

In conclusion, we have achieved a simple, short, and efficient total synthesis of simplactones A (1) and B (2) from (4-methoxybenzyl)-protected 3-hydroxypropanal and (2S)-N-butanoylbornane-10,2-sultam (3) in an overall yield of 52 and 48%, respectively. The advantage of this synthesis compared with the previous report [3] is the use of only one chiral auxiliary for the 'anti' and 'syn' isomers, the difference in the reaction conditions being the amount of $TiCl_4$ and aldehyde with respect to the chiral auxiliary **3**. In the synthesis of simplactones A and B reported by Osorio–Lozada and Olivo [3], two different chiral auxiliaries were used in a first step, and a further chiral auxiliary was present in a subsequent step.

The authors are thankful to the *Council of Scientific and Industrial Research (CSIR)*, New Delhi, India, for the financial support, and to Dr. J. S. Yadav, Director, Indian Institute of Chemical Technology (IICT), for his encouragement.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. The reagents were purchased from *Aldrich* and *Acros* and were used without further purification unless otherwise stated. All moisture-sensitive reactions were carried out under N₂. Org. solns. were concentrated *in vacuo* below 40°. Column chromatography (CC): silica gel (*Acme's* 60–120 mesh). Optical rotations: *Horiba* high sensitive polarimeter *SEPA-300* at 25°. IR Spectra: *Perkin–Elmer-IR-683*

1483

a) (4-Methoxybenzyl)-protected 3-hydroxypropanal, TiCl₄, ⁱPr₂NEt, dry CH₂Cl₂, 3 h; 92%. b) LiAlH₄, dry Et₂O, 4 h; 95%. c) ⁱBuMe₂SiOTf, 2,6-lutidine, dry CH₂Cl₂, 1 h; 95%. d) DDO, CH₂Cl₂, H₂O, 2 h; 90%. e) Iodobenzene diacetate, cat. TEMPO, dry CH₂Cl₂, 3 h; 88%. f) Bu₄NF, THF, 2 h; 90%. g) Iodobenzene diacetate, cat. TEMPO, dry CH₂Cl₂, 3 h; 88%.

spectrophotometer with NaCl optics; $\tilde{\nu}$ in cm⁻¹. ¹H- (300 MHz) and ¹³C-NMR (75 MHz) Spectra: *Bruker-Avance-300* instrument; in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: *Agilent-Technologies-1100* instrument (*Agilent* Chemistation software); in *m/z*.

(2S)-N-Butanoylbornane-10,2-sultam (=1-[(3aR,6R,7aS)-Tetrahydro-8,8-dimethyl-2,2-dioxido-3H-3a,b-methano-2,1-benzisothiazol-1(4H)-yl]butan-1-one; **3**). To a stirred soln. of (+)-camphor-derived sultam (5 g, 23.25 mmol) and butanoyl chloride (4.88 ml, 46.51 mmol) in dry benzene (50 ml) under N₂ was added anh. CuCl₂ (0.62 g, 4.65 mmol), and the mixture was refluxed for 12 h. The hot mixture was filtered, the filter, washed with CH₂Cl₂ (20 ml), the combined filtrate concentrated and, the residue purified by CC: **3** (6.0 g, 92%). Colorless crystals. $[a]_{25}^{25} = +91.9$ (c = 1.0, CHCl₃). ¹H-NMR: 3.82 (t, J =6.2, 1 H); 3.39 (q, J = 13.5, 2 H); 2.63 (q, J = 8.3, 2 H); 2.01 – 2.11 (m, 2 H); 1.81 – 1.91 (m, 3 H); 1.68 (q, J = 7.2, 2 H); 1.32 – 1.45 (m, 2 H); 1.14 (s, 3 H); 0.96 (s, 3 H); 0.96 (t, J = 7.2, 3 H). ESI-MS: 286 ($[M + 1]^+$).

(2R,3R)-2-*Ethyl*-3-hydroxy-5-[(4-methoxyphenyl)methoxy]-1-[(3aR,6R,7aS)-tetrahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano-2,1-benzisothiazol-1(4H)-yl]-pentan-1-one (**4**). To a cooled (-78°) soln. of **3** (1.0 g, 3.5 mmol) in dry CH₂Cl₂ (20 ml) and TiCl₄ (1.15 ml, 3.0 equiv.) was added slowly ⁱPr₂NEt (1.85 ml, 2.2 equiv.), and the mixture was stirred for 90 min, followed by addition of (4-methoxybenzyl)protected 3-hydroxypropanal (2.0 g, 10.3 mmol) at -78° , and further stirring for 90 min. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (10 ml), the mixture extracted with CH₂Cl₂ (3 × 20 ml), the extract dried (Na₂SO₄) and concentrated, and the residue purified by CC (hexane/AcOEt 4:1): **4** (1.42 g, 84%). Colorless liquid. [a]²⁵₂ = +40 (c =0.8, CHCl₃). IR (neat): 3479, 2959, 2929, 1688, 1513, 1244. ¹H-NMR: 7.20 (d, J =8.3, 2 H); 6.80 (d, J =8.3, 2 H); 4.41 (s, 2 H); 3.98 – 4.09 (m, 1 H); 3.87 (t, J = 6.0, 1 H); 3.78 (s, 3 H); 3.52 – 3.67 (m, 2 H); 3.42 (q, J = 13.5, 2 H); 3.18 (br. s, 1 H); 3.07 (q, J = 5.2, 1 H); 2.07 (d, J = 6.0, 2 H); 1.77 – 1.94 (m, 6 H); 1.33 – 1.46 (m, 2 H); 1.26 (s, 1 H); 1.16 (s, 3 H); 0.98 (s, 3 H); 0.92 (t, J = 7.5, 3 H). ¹³C-NMR: 171.1; 159.58; 129.35; 128.65 (2 C); 113.54 (2 C); 72.86; 72.10; 67.47; 65.40; 55.26; 53.28; 52.51; 44.58 (2 C); 40.93; 34.86; 32.90; 26.40; 21.68; 20.69; 19.94 (2 C); 11.62. ESI-MS: 480 ($[M+1]^+$).

(2S,3R)-2-*Ethyl*-5-[(4-methoxyphenyl)methoxy)pentane-1,3-diol (5). To a cooled (0°) stirred suspension of LiAlH₄ (168 mg, 4.42 mmol) in dry Et₂O (20 ml) was added **4** (1.0 g, 2.96 mmol), and the mixture was stirred for 3 h at 0°. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln., the mixture extracted with AcOEt (5 × 10 ml), the extract dried (Na₂SO₄) and concentrated, and the residue purified by CC (hexane/AcOEt 7:3): pure **5** (760 mg, 95%). Colorless liquid. [a]²⁵₂ = -4.54 (c = 0.6, CHCl₃). IR (neat): 3419, 2926, 2863, 1612, 1512, 1247, 1086, 1033. ¹H-NMR: 7.19 (d, J = 8.3, 2 H); 6.83 (d, J = 9.0, 2 H); 4.44 (s, 2 H); 3.81 (dt, J = 2.2, 5.2, 2 H); 3.79 (s, 3 H); 3.67 – 3.75 (m, 1 H); 3.54 – 3.67 (m, 2 H); 1.67 – 1.77(m, 1 H); 1.51 – 1.55 (m, 1 H); 1.23 – 1.46 (m, 3 H); 0.94 (t, J = 7.55, 3 H). ¹³C-NMR: 159.5; 129.45; 129.36 (2 C); 113.87 (2 C); 76.46; 73.15; 69.64; 63.89; 55.26; 46.63; 34.64; 21.37; 11.77. ESI-MS: 291 ([M + Na]⁺).

(5R,6S)-6-*Ethyl*-5-{2-[(4-methoxyphenyl)methoxy]ethyl}-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (**6**). To a cooled (0°) soln. of **5** (400 mg, 1.49 mmol) and 2,6-lutidine (0.672 ml, 6.28 mmol, 2 equiv.) in dry CH₂Cl₂ (10 ml) was added 'BuMe₂SiOTf (0.696 ml, 2.86 mmol), and the mixture was stirred at r.t. for 45 min. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (5 ml), the mixture extracted with CH₂Cl₂ (3 × 10 ml), the extract dried (Na₂SO₄) and concentrated, and the residue purified by CC (hexane/AcOEt 9:1): pure **6** (700 mg, 95%). Pale yellow liquid. [a] $_{25}^{25} = -4.11$ (c = 0.8, CHCl₃). IR (neat): 2929, 2856, 1639, 1250, 1092. ¹H-NMR: 7.25 (d, J = 9.06, 2 H); 6.87 (d, J = 9.06, 2 H); 4.41 (d, J = 2.26, 2 H); 3.92 – 4.04 (s, 1 H); 3.80 (s, 3 H); 3.42 – 3.60 (m, 4 H); 1.60 – 1.85 (m, 1 H); 1.23 – 1.60 (m, 3 H); 1.04 – 1.21 (m, 1 H); 0.90 (t, J = 7.55, 3 H); 0.88 (s, 9 H); 0.87 (s, 9 H); 0.02 (s, 6 H). ¹³C-NMR: 159.5; 129.34; 129.25 (2 C); 113.86 (2 C); 73.13; 72.81; 69.67; 63.90; 55.20; 48.43; 43.3; 34.58; 25.85 (3 C); 25.59 (3 C); 19.1 (2 C); 10.38; – 3.6 (2 C); -5.7 (2 C). ESI-MS: 519 ([M+Na]⁺).

 $(3R,4S)-3-{[[(tert-Butyl)dimethylsily]]oxy]-4-{[[[(tert-butyl)dimethylsily]]oxy]methyl]hexan-1-ol}$ (7). To a soln. of **6** (600 mg, 1.2 mmol) in CH₂Cl₂/H₂O 9:1 (20 ml) was added DDQ (329 mg, 1.44 mmol), and the mixture was stirred at r.t. for 2 h. After completion of the reaction (TLC), the mixture was neutralized with sat. NaHCO₃ soln. (5 ml) and extracted with CH₂Cl₂ (3 × 10 ml), the combined org. phase washed with brine (10 ml), dried (Na₂SO₄), and concentrated, and the residue purified by CC (hexane/AcOEt 7:3): pure **7** (400 mg, 89%). Pale yellow liquid. [α]₂₅²⁵ = +2.72 (c = 0.6, CHCl₃). IR (neat): 3462, 2955, 1635, 1219. ¹H-NMR: 4.03 - 4.11 (m, 1 H); 3.67 (q, J = 6.0, 2 H); 3.43 - 3.64 (m, 2 H); 1.56 - 1.75 (m, 2 H); 1.23 - 1.37 (m, 2 H); 1.02 - 1.17 (m, 1 H); 0.92 (t, J = 7.55, 3 H); 0.89 (s, 18 H); 0.08 (s, 3 H); 0.07 (s, 3 H); 0.04 (s, 3 H); 0.03 (s, 3 H). ¹³C-NMR: 71.52; 61.68; 60.88; 47.90; 35.37; 29.70; 25.87 (6 C); 25.63; 20.34; 12.35; -4.46 (2 C); -5.49 (2 C). ESI-MS: 377 ([M + 1]⁺).

(3R,4S)-3-{[(tert-Butyl)dimethylsily]oxy]-4-{[[(tert-butyl)dimethylsily]oxy]methyl]hexanal (8). To a cooled (0°) soln. of 7 (300 mg, 0.79 mmol) in dry CH₂Cl₂ (15 ml) were added iodobenzene diacetate (384 mg, 1.19 mmol) and TEMPO (24.9 mg, 0.15 mmol), and the mixture was stirred at r.t. for 4 h. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (5 ml), the mixture extracted with CH₂Cl₂ (3 × 10 ml), the combined org. layer washed with brine (10 ml), dried (Na₂SO₄), and concentrated, and the residue purified by CC (hexane/AcOEt 9:1): pure 8 (270 mg, 90%). Pale yellow liquid. [α]₂₅⁵ = +6.0 (c = 1.0, CHCl₃). IR (neat): 2956, 2857, 1728, 1253, 1089. ¹H-NMR: 9.80–9.76 (m, 1 H); 4.43–4.50 (m, 1 H); 3.57–3.68 (m, 1 H); 3.48 (dd, J = 7.5, 10.5, 1 H); 2.44–2.64 (m, 1 H); 1.51–1.69 (m, 1 H); 1.05–1.20 (m, 2 H); 0.92 (t, J = 7.5, 3 H); 0.89 (s, 9 H); 0.87 (s, 9 H); 0.07 (s, 3 H); 0.04 (s, 9 H). ¹³C-NMR: 202.85; 68.36; 62.34; 48.64; 47.30; 25.86 (6 C); 18.5 (2 C); 18.1; 12.4; -4.48 (2 C); -5.46 (2 C). ESI-MS: 397 ([M+Na]⁺).

(4R,5S)-5-*Ethyltetrahydro*-2H-*pyran*-2,4-*diol* (**9**). To a cooled (0°) soln. of **8** (200 mg, 0.53 mmol) in dry THF (10 ml) was added 1.0M Bu₄NF in THF (0.53 ml, 0.53 mmol), and the mixture was stirred for 2 h at 0°. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (5 ml), the mixture extracted with AcOEt (3×10 ml), the combined org. phase washed with brine (10 ml), dried (Na₂SO₄), and concentrated, and the residual liquid purified by CC (hexane/AcOEt 7:3): pure **9** (70 mg, 90%). Pale yellow liquid. [α]_D²⁵ = +16.5 (c = 3.0, CHCl₃). IR (neat): 3453, 2924, 1639, 1381, 1048. ¹H-NMR: 5.31 (t, J = 3.0, 1 H); 4.72 (br. s, 1 H); 4.63 (dd, J = 3.0, 6.0, 1 H); 4.17 – 4.10 (m, 1 H); 3.69 (dd, J = 3.7, 10.3, 1 H); 3.53 (dd, J = 6.7, 11.3, 1 H); 1.98 (br. s, 1 H); 1.77 – 1.86 (m, 1 H); 1.50 – 1.69 (m, 2 H);

1.30 - 1.47 (*m*, 1 H); 0.96 (*t*, *J* = 6.7, 3 H). ¹³C-NMR: 92.83; 67.73; 61.52; 43.76; 37.03; 21.08; 11.28. ESI-MS: 147 ([*M* + 1]⁺).

(4R,5S)-5-*Ethyltetrahydro-4-hydroxy-2*H-*pyran-2-one* (**1**). To a cooled (0°) soln. of **9** (40 mg, 0.27 mmol) in dry CH₂Cl₂ (10 ml) were added iodobenzene diacetate (88 mg, 0.27 mmol) and TEMPO (cat.), and the mixture was stirred at r.t. for 4 h. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (5 ml), the mixture extracted with CH₂Cl₂ (3 × 10 ml), the combined org. layer washed with brine (10 ml), dried (Na₂SO₄), and concentrated, and the residual liquid purified by CC (hexane/AcOEt 4:1): pure **1** (35 mg, 89%). Colourless liquid. $[a]_{D}^{25} = +23.0 (c = 1.0, CHCl_3) [3]$. IR (neat): 3420, 2945, 1721, 1415, 1205. ¹H-NMR: 4.38 (*dd*, *J* = 10.4, 11.2, 1 H); 4.21 (*dd*, *J* = 5.1, 11.2, 1 H); 4.10 (br. *s*, 1 H); 2.90 (br. *s*, 1 H); 2.72 (*dd*, *J* = 3.6, 17.8, 1 H); 2.61 (*dd*, *J* = 3.6, 17.8, 1 H); 1.80–1.98 (*m*, 1 H); 1.40–1.50 (*m*, 1 H); 1.25–1.38 (*m*, 1 H); 0.98 (*t*, *J* = 7.5, 3 H). ¹³C-NMR: 170.6; 69.2; 64.4; 39.2; 39.1; 19.2; 11.1. ESI-MS: 145 ([*M*+1]⁺).

(2S,3R)-2-*Ethyl-3-hydroxy-5-[(4-methoxyphenyl)methoxy]*-1-[(3aR,6R,7aS)-tetrahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano-2,1-benzisothiazol-1(4H)-yl]pentan-1-one (**10**). As described for **4**, with **3** (1.0 g, 3.5 mmol), TiCl₄ (0.38 ml, 1.0 equiv.), CH₂Cl₂ (20 ml), ⁱPr₂NEt (0.73 ml, 1.2 equiv.), and (4methoxybenzyl)-protected 3-hydroxyproanal (0.68 g, 3.5 mmol): pure **10** (1.55 g, 92%). White solid. $[\alpha]_{25}^{25} = +33.07 (c = 0.7, CHCl_3)$. IR (KBr): 3509, 2956, 2878, 1691, 1613, 1515, 1022. ¹H-NMR: 7.20 (d, J =8.3, 2 H); 6.81 (d, J = 8.3, 2 H); 4.41 (s, 2 H); 3.99 – 4.11 (m, 1 H); 3.87 (t, J = 6.0, 1 H); 3.78 (s, 3 H); 3.53 – 3.67 (m, 2 H); 3.43 (q, J = 13.5, 2 H); 3.19 (d, J = 1.51, 1 H); 3.08 (q, J = 5.2, 1 H); 2.07 (d, J = 6.79, 2 H); 1.65 – 1.96 (m, 7 H); 1.33 – 1.51 (m, 2 H); 1.16 (s, 3 H); 0.97 (s, 3 H); 0.92 (t, J = 7.5, 3 H). ¹³C-NMR: 175.1; 159.0; 130.1; 129.22 (2C); 113.68 (2 C); 72.66; 70.05; 68.33; 65.25; 55.18; 53.20; 52.49; 48.3; 47.6; 44.56; 38.57; 33.89; 32.89; 26.32; 21.67; 20.71; 19.83; 11.02. ESI-MS: 502 ([M + Na]⁺).

(2R,3R)-2-*Ethyl*-5-[4-methoxyphenyl)methoxy]pentane-1,3-diol (11). As described for **5**, with LiAlH₄ (166 mg, 4.36 mmol), Et₂O (20 ml), and **10** (1.4 g, 2.92 mmol) (quenching with sat. Na₂SO₄ soln.): pure **11** (740 mg, 95%). Colorless liquid. $[\alpha]_{25}^{25} = -16.0 (c = 0.7, CHCl_3)$. IR (neat): 3419, 2926, 2863, 1612, 1086, 1033. ¹H-NMR: 7.19 (d, J = 8.3, 2 H); 6.83 (d, J = 9.0, 2 H); 4.44 (s, 2 H); 4.03 (td, J = 3.0, 9.8, 1 H); 3.79 (s, 3 H); 3.55 – 3.75 (m, 4 H); 1.84 – 1.99 (m, 1 H); 1.51 – 1.65 (m, 2 H); 1.22 – 1.39 (m, 2 H); 0.95(t, J = 7.5, 3 H). ¹³C-NMR: 159.67; 129.43; 129.35 (2 C); 113.86 (2 C); 75.97; 73.12; 69.89; 64.20; 55.25; 46.09; 31.79; 19.03; 12.28. ESI-MS: 291 ($[M + Na]^+$).

(5R,6R)-6-*Ethyl*-5-[2-[(4-methoxyphenyl)methoxy]ethyl]-2,2,3,3,9,9,10,10-octamethyl-4,8-dioxa-3,9-disilaundecane (12). As described for **6**, with **11** (400 mg, 1.49 mmol), CH₂Cl₂ (20 ml), 2,6-lutidine (0.672 ml, 6.28 mmol), and 'BuMe₂SiOTf (0.696 ml, 2.86 mmol) (quenching with sat. NH₄Cl soln. (10 ml)): **12** (700 mg, 95%). Pale yellow liquid. $[a]_{25}^{25} = +3.75$ (c = 0.8, CHCl₃). IR (neat): 2931, 2858, 1513, 1464, 1250, 1094. ¹H-NMR: 7.25 (d, J = 8.3, 2 H); 6.87 (d, J = 8.3, 2 H); 4.41 (s, 2 H); 3.91 – 4.00 (m, 1 H); 3.80 (s, 3 H); 3.6–3.68 (dd, J = 5.2, 9.8, 1 H); 3.41–3.58 (m, 3 H); 1.54–1.86 (m, 2 H); 1.23–1.48 (m, 3 H); 0.91 (t, J = 7.5, 3 H); 0.88 (s, 9 H); 0.87 (s, 9 H); 0.04 (s, 6 H); 0.02 (s, 6 H). ¹³C-NMR: 159.72; 129.34; 129.22 (2 C); 113.83 (2 C); 75.90; 73.10; 69.85; 67.40; 64.14; 55.21; 48.17; 46.40; 25.86 (4 C); 25.60 (2 C); 18.99 (2 C); 12.23; -3.63 (2 C); -4.62 (2 C). ESI-MS: 519 ([M + Na]⁺).

(3R,4R)-3-{[(tert-*Butyl*)*dimethylsily*]*oxy*]-4-{{[(tert-*butyl*)*dimethylsily*]*oxy*]*methyl*]*hexan*-1-*ol* (13). As described for 7, with 12, CH₂Cl₂/H₂O 9:1, and DDQ. After completion of the reaction, the mixture was diluted with H₂O (10 ml) and extracted as described for 7: pure 13 (410 mg, 90%). Pale yellow liquid. [a]₂₅²⁵ = -2.7 (c = 0.5, CHCl₃). IR (neat): 3453, 2929, 2858, 1638, 1253, 1090. ¹H-NMR: 3.94-4.04 (m, 1 H); 3.61-3.73 (m, 3 H); 3.51-3.59 (m, 1 H); 1.59-1.79 (m, 2 H); 1.32-1.46 (m, 1 H); 1.23-1.32 (m, 2 H); 0.93 (t, J = 7.5, 3 H); 0.89 (s, 9 H); 0.88 (s, 9 H); 0.09 (s, 3 H); 0.06 (s, 3 H); 0.03 (s, 6 H). ¹³C-NMR: 71.52; 61.68; 60.89; 47.90; 35.37; 25.87 (6 C); 20.34; 18.72 (2 C); 12.35; -4.54 (2 C); -5.45 (2 C). ESI-MS: 377 ($[M + 1]^+$).

(3R,4R)-3-{[(tert-Butyl)dimethylsilyl]oxy]-4-{[[(tert-butyl)dimethylsilyl]oxy]methyl}hexanal (14). As described for 8, with 13, CH₂Cl₂, iodobenzene diacetate, and TEMPO: pure 14 (260 mg, 88%). Pale yellow liquid. [a]_D²⁵ = -4.0 (c = 1.5, CHCl₃). IR (neat): 2927, 2856, 1635, 1219. ¹H-NMR: 9.78 - 9.74 (m, 1 H); 4.31 - 4.37 (m, 1 H); 3.57 - 3.68 (m, 2 H); 2.43 - 2.63 (m, 2 H); 1.69 - 1.92 (m, 1 H); 1.18 - 1.66 (m, 1 H); 1.02 - 1.17 (m, 1 H); 0.92 (t, J = 7.5, 3 H), 0.89 (s, 9 H); 0.86 (s, 9 H); 0.06 (s, 3 H); 0.04 (s, 3 H); 0.04 (s, 6 H). ¹³C-NMR: 202.56; 68.25; 60.88; 48.52; 48.38; 25.86 (4 C); 25.77 (2 C); 20.36; 18.18; 18.03; 12.21; -4.56 (2 C); -4.97 (2 C). ESI-MS: 397 ([M + Na]⁺). (4R,5R)-5-*Ethyltetrahydro*-2H-*pyran*-2,4-*diol* (**15**). As described for **9**, with **14**, THF, and 1.0M Bu₄NF in THF: pure **15** (70 mg, 90%). Pale yellow liquid. $[\alpha]_{D}^{25} = -32.3$ (c = 1.0, CHCl₃). IR (neat): 3450, 2923, 2854, 1639, 1460, 1220. ¹H-NMR: 5.35 (t, J = 3.0, 1 H); 4.95 (br. s, 1 H); 3.63 – 3.90 (m, 2 H); 3.27 (dd, J = 6.0, 12.0, 1 H); 2.15 (br. s, 1 H); 1.70 – 1.86 (m, 1 H); 1.55 – 1.69 (m, 2 H); 1.15 – 1.52 (m, 2 H); 0.94 (t, J = 6.7, 3 H). ¹³C-NMR: 93.67; 69.66; 62.41; 45.19; 38.97; 21.37; 11.70. ESI-MS: 147 ($[M + 1]^+$).

(4R,5R)-5-*Ethyltetrahydro*-4-*hydroxy*-2H-*pyran*-2-*one* (**2**). As described for **1**, with **15**, CH₂Cl₂, iodobenzene diacetate, and TEMPO: pure **2** (34 mg, 88%). Colorless liquid. $[\alpha]_{25}^{D5} = -24.0 \ (c = 1.0, CHCl_3)$ [3]. IR (neat): 3475, 2989, 2930, 1721, 1265, 1014. ¹H-NMR: 4.44 (*dd*, J = 5.2, 10.4, 1 H); 3.90–4.05 (*m*, 1 H); 2.78 (*dd*, J = 5.8, 11.6, 1 H); 2.52 (*dd*, J = 5.8, 11.6, 1 H); 1.50–1.88 (*m*, 2 H); 1.20–1.45 (*m*, 1 H); 1.01 (*t*, J = 7.55, 3 H). ¹³C-NMR: 171.0; 69.1; 67.8; 42.5; 38.4; 20.8; 11.1. ESI-MS: *m/z* 145 ([*M* + 1]⁺).

REFERENCES

- [1] F. Cafieri, E. Fattorusso, O. Taglialatela-Scafati, M. Di Rosa, A. Ianaro, Tetrahedron 1999, 55, 13831.
- [2] M. Sato, H. Nakashima, K. Hanada, M. Hayashi, M. Honzumi, T. Taniguchi, K. Ogasawara, *Tetrahedron Lett.* 2001, 42, 2833.
- [3] A. Osorio-Lozada, H. F. Olivo, J. Org. Chem. 2009, 74, 1360.
- [4] A. Kamal, P. Venkat Reddy, S. Prabhakar, P. Suresh, Tetrahedron: Asymmetry 2009, 20, 1798.
- [5] M. Somi Reddy, M. Narender, K. Rama Rao, Tetrahedron 2007, 63, 11011.
- [6] G. W. K. Cavill, D. V. Clark, F. B. Whitefield, Aust. J. Chem 1968, 21, 2819.
- [7] T. Honda, T. Kametani, K. Kanai, Y. Tatsuzaki, M. Tsubuki, J. Chem. Soc., Perkin Trans. 1 1990, 1733; A. D. Argoudelis, J. F. Zieserl, Tetrahedron Lett. 1966, 18, 1969.
- [8] W. Oppolzer, J. Blagg, I. Rodriguez, E. Walther, J. Am. Chem. Soc. 1990, 112, 2767.
- B. H. Fraser, D. M. Gelman, P. Perlmutter, F. Vountatsos, *Tetrahedron: Asymmetry* 2006, 17, 1152; W. Oppolzer, C. Starkemann, I. Rodriquez, G. Bernardinelli, *Tetrahedron Lett.* 1991, 32, 61; P. Prabhakar, S. Rajaram, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2009, 20, 1806.
- [10] G. Kumaraswamy, M. Padmaja, B. Markondaiah, N. Jena, B. Sridhar, M. Udaya Kiran, J. Org. Chem. 2006, 71, 337.
- [11] P. V. Murphy, C. McDonnell, L. Hämig, D. E. Paterson. R. J. K. Taylor, *Tetrahedron: Asymmetry* 2003, 14, 79.
- [12] H. P. Acharya, Y. Kobayashi, Tetrahedron Lett. 2005, 46, 8435.
- [13] C. P. Narasimhulu, J. Iqbal, K. Mukkanti, P. Das, Tetrahedron Lett. 2008, 49, 3185.
- [14] I. Safir, J. I. Candela Lena, L. Finet, N. Birlirakis, S. Arseniyadis, *Tetrahedron: Asymmetry* 2005, 16, 3436.

Received January 13, 2011